

NEURON for multiscale simulations: reaction-diffusion and electrophysiology

RA McDougal¹, A Bulanova¹, M.N.I. Patoary², C Tropper², ML Hines¹, WW Lytton^{3,4} 1 Yale University, 2 McGill University, 3 SUNY Downstate, 4 Kings County Hospital

Introduction

- NEURON is widely used for simulating electrophysiology.
- NEURON 7.3 included a module for reaction-diffusion simulation, to facilitate the study of chemical-electrical interactions.
- Current work includes expanding reaction-diffusion capabilities and interfacing different techniques.
- Model specification is independent of discretization or solver.

Plugins

To support functionality not yet implemented in NEURON and domain-specific solvers, we are developing a plugin framework. Plugins must provide:

- sol.init(species, reactions)
- \bullet sol.advance(dt)
- sol.set_rate_of_change(nodelist, values)
- sol.transfer_states_to_neuron(which=None)
- sol.transfer_states_from_neuron()
- sol.supported_sim()

Activate the solver via:

• rxd.set_solver(sol)

Interfaces

Small volumes are best modeled stochastically;

changes in geometry are best modeled with

Difficulty: the right choice of 1D vs 3D or

deterministic vs stochastic may be different

a fine, high-dimensional mesh.

for different species.

Time

Timescales may vary wildly within the same

In fixed step mode, NEURON currently offers the option of only updating the reaction-diffusion on some fraction of time steps.

Space

A fine discretization helps capture changes in chemical concentrations over short distances; voltage typically takes large distances to vary significantly.

Challenges: Develop a clear and concise specification. Develop rules for branch points.

Acknowledgments

Supported by R01MH086638, 2T15LM007056.

Model Specification

Where?

r = rxd.Region(apicals, geometry=???)

Who?

What?

leak = rxd.MultiCompartmentReaction($ca[er] \Leftrightarrow ca[cyt], kf, kb,$ membrane=ermem)

McDougal et al. Front Neuroinf. 2013.